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The velocity field of homogeneous isotropic turbulence is simulated by a large 
number (38-1200) of random Fourier modes varying in space and time over a large 
number (>loo)  of realizations. They are chosen so that the flow field has certain 
properties, namely (i) it  satisfies continuity, (ii) the two-point Eulerian spatial 
spectra have a known form (e.g. the Kolmogorov inertial subrange), (iii) the time 
dependence is modelled by dividing the turbulence into large- and small-scales 
eddies, and by assuming that the large eddies advect the small eddies which also 
decorrelate as they are advected, (iv) the amplitudes of the large- and small-scale 
Fourier modes are each statistically independent and each Gaussian. The structure 
of the velocity field is found to  be similar to that computed by direct numerical 
simulation with the same spectrum, although this simulation underestimates the 
lengths of tubes of intense vorticity. 

Some new results and concepts have been obtained using this kinematic 
simulation: (a) for the inertial subrange (which cannot yet be simulated by other 
means) the simulation confirms the form of the Eulerian frequency spectrum 
q5: = C E s i @ d ,  where s, U o , w  arc thc rate of energy dissipation per unit mass, 
large-scale r.m.s. velocity, and frequency. For isotropic Gaussian large-scale 
turbulence a t  very high Reynolds number, CE x 0.78, which is close to  the computed 
value of 0.82; ( b )  for an observer moving with the large eddies the ‘Eulerian- 
Lagrangian ’ spectrum is q5RL = C E L s ~ - 2 ,  where CEL x 0.73 ; (c) for an observer 
moving with a fluid particle the Lagrangian spectrum = C’EW-~,  where CL x 0.8, 
a value consistent with the atmospheric turbulence measurements by Hanna (1981) 
and approximately equal to CEL; ( d )  the mean-square relative displacement of a 
pair of particles ( A 2 )  tends to the Richardson (1926) and Obukhov (1941) form 
( A 2 )  = G, et3, provided that the subrange extends over four decades in energy, and 
a suitable origin is chosen for the time t .  The constant G, is computed and is equal 
to 0.1 (which is close to Tatarski’s 1960 estimate of 0.06) ; ( e )  difference statistics (i.e. 
displacement from the initial trajectory) of single particles are also calculated. The 
exact result that (Y“) = G,st3 with G, = 2nCL is approximately confirmed 
(although it  requires an even larger inertial subrange than that for ( A 2 ) ) .  It is found 
that the ratio BG = 2 ( y 2 ) / ( A 2 )  x 100, whereas in previous estimates BG x 1, 
because for much of the time pairs of particles move together around vortical regions 
and only separate for the proportion of the time (of O(f,)) they spend in straining 
regions where streamlines diverge. It is estimated that 9IG x O ( f i 3 ) .  Thus relative 
diffusion is both a ‘structural’ (or ‘topological’) process as well as an intermittent 
inverse cascade process determined by increasing eddy scales as the particles 
separate ; (f) statistics of large-scale turbulcnce are also computed, including the 
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Lagrangian timescale, the pressure spectra and correlations, and these agree with 
predictions of Batchelor (1951), Hinzc (1975) and George et al. (1984). 

1. Introduction 
In many fields of turbulcnce research, it is as necessary to be able to compute or 

model actual flow fields as they evolve as it is to know the statistics of the turbulence 
(e.g. spectra, correlations ctc). This is because many processes involving turbulence 
are not well enough understood to be quantified in terms of the statistics. For 
example thc effect of turbulence on chemical reactions (e.g. Broadwell & Breidenthal 
1982) or on particle trajectories ( e g  Maxey 1987) or on bubble concentrations (e.g. 
Hunt et al. 1988) can best be understood and modelled in terms of actual flow 
structures. One reason for this is that certain reactions or bubble concentrations 
tends to be located in vortical regions of the flow, whilst particles appear to move in 
regions between vortices. These highly non-uniform processes and distributions 
cannot be modelled satisfactorily in terms of thc statistics of the velocity field. 
Instead it is necessary to compute reacting spccics or the motion of bubbles and 
particles as they are transported in the actual flow. 

When such studies have progressed further it is likely that reliable models will 
emerge relating these complex proccsses to the statistics of the turbulence. For 
example several research groups are exploring the use of stochastic models for the 
fluctuating velocity at the site of a particle moving randomly through turbulent 
flows (e.g. random flight models). The essential feature of these models is that they 
assume certain relations between Eulerian and Lagrangian statistics which can only 
be tested in detail using a computation of a velocity field. In studies of combustion 
and mixing, models are being developed based on the large scale deterministic flow 
structure within the turbulence (e.g. Broadwell & Breidenthal 1982 ; Peters & 
Williams 1988). There are also smaller scale processes, such as thc coagulation of 
small particles or the break-up of bubbles and transmission of waves through 
turbulence, where the small-scale velocity field must be simulated. 

These are practical reasons for developing methods for computational modelling of 
actual flow fields. But the study of the fundamental dynamics and kinematics of 
turbulence also requires simulations of actual flow fields. Certain important concepts 
of turbulence can be explored even with simulations that are not quite accurate, 
partly because these concepts are based on dimensional scaling arguments which are 
equally applicable to a sum of Fourier modes as to a nonlinear flow field. For 
example we can explore how the distance ( A )  between pairs of fluid elements 
increases in different flow fields (or when the inertial range law ( A 2 )  cc t3 is valid), the 
relationship between Lagrangian and Eulcrian statistics, and how they depend on 
the assumptions about the dependence on time of the Fourier modes in the 
simulation. By comparing this simulation with those derived from computations of 
the full nonlinear equations, we learn from their similarity that many of the broad 
features of the flow field are insensitive to the dynamics (as was suggested in earlier 
studies on turbulence, e.g. Batchelor 1953, pp. 6-7). The specific dynamics of the 
Euler equation control the statistics, but may only affect local details of the 
velocity field (e.g. the length of tubes of intense vorticity). 

Most simulations of turbulent flow fields use exact or approximate solutions to the 
equations of motion which are continuously solved to represent the evolving flow 
field. In  a direct numerical simulation of turbulence the flow is calculated from first 
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principles without any closure assumptions. All that is needed are proper initial and 
boundary conditions, an accurate and efficient numerical solution scheme and a large 
computer (Rogallo & Moin 1984). Although some progress has been made in the 
efficiency and accuracy of computational algorithms, particularly in the adaptation 
of spectral methods, the primary limitation on our ability to simulate high- 
Reynolds-number turbulence is the speed and memory size of the computing 
hardware. Though a turbulent Reynolds number of 150 has been achieved (Vincent 
& Meneguzzi 1991), this is still too low for the study of many turbulence phenomena 
found in geophysical flows. This restriction on Reynolds number is avoided by 
computing solutions to the dynamical equations only for the large scales, and 
modelling the small scales in terms of a local eddy viscosity acing on the large scales. 
This is the method of large-eddy simulation. 

In  this paper random flow fields are generated from certain statistical distributions 
that are known from measurements or direct simulations, but the flow fields do not 
necessarily satisfy the dynamical equations nor do they have all the known statistical 
distributions. We extend the methods of Kraichnan (1970) and Drummond, Duane 
& Horgan (1984), who studied turbulent diffusion using statistically independent 
random Fourier modes, bu t  not a full spectrum. No attempt was made by these 
authors to  model the details of the inertial range. However, some important concepts 
emerged from those studies about the Lagrangian timescale and the role of molecular 
processes in turbulent diffusion. 

The essential objective here is to use the specified velocity field to predict some new 
results, which can be compared with experiments (or other kinds of simulation). If 
the simulation is a t  all useful it should also lead to some new concepts. The 
construction and use of kinematic simulations (KS) ought to be based on the results 
obtained from dynamical simulations and from experiments. One can also regard this 
simulation as a convenient way of providing an accessible repository or reference for 
much of our present knowledge of two-point/two-time Eulerian/Lagrangian 
statistics. It may enable investigators using turbulent flow fields to  estimate many 
widely different kinds of statistics that are needed for different applications. (Brief 
accounts of this simulation and its applications have been reported by Fung et al. 
1991, Hunt et al. 1991.) 

The kinematic simulation of homogeneous turbulence presented here is not grid- 
based, and does not require the solution of any set of equations, so it can be easily 
programmed on any computer. It takes a long time to run on a small computer ; i t  
is more convenient to  use a large one ! It is ideally suited to parallel computations. 
The method can be extended to  allow for shear (Carruthers et al. 1990) and for the 
effects of rigid walls or distortion of turbulence a t  a density interface (Perkins et al. 
1990), following the approaches of Lee, Kim & Moin (1990) and Turfus & Hunt 
(1987). 

2. Method 
For homogeneous turbulent flow defined within a space lxil c Xi  that is stationary 

in time (within a period T ) ,  the velocity field can be represented as a Fourier series 
in the limits N ,  Pw+ co : 

N k  pu 

u ( x , t )  = 2 2 SnrPexp{i(k,lx,+w,t)} ( i =  1 , 2 , 3 ) ,  (2.1) 
ni'-Nk P - - p ,  

where knt = 2nn,/Xi, w p  = 2np/T and Snip are random vector Fourier coefficients. 
10 FLM 236 
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X 

eddy 

FIGURE 1 .  Flow field composed of large-scale eddies and small-scale eddies that are transported by 
the large scales. -, Streamlines; + + + +, fluid particle trajectories, x ( t , a )  = J k  (u,+u,)dt’; 
0 0 0 0, trajectory of a small-scale eddy advected from X(t  = 0) to position x( t )  at time t (see X 
in (2.8)), i.e. Jku,(xl(t’),t’)dt’. 

For finite values of Nk,  eo, (2.1) is an approximation, the accuracy of which depends 
on the form of the velocity field. If there is a mean flow, we take coordinates moving 
with the mean flow. 

The wavenumbers distributed here in a Cartesian frame can also be distributed 
within a spherical coordinate system over Nk shells (where I K I  = k = constant) and MH 
angles. So the nth spatial mode in (2.1) becomes an mnth mode. It is found that a 
satisfactory representation is obtained by including only a limited number of 
temporal (frequency) modes for each spatial (wavenumber) mode, so that w p  is 
a function of I I C , ~ .  Therefore op is written as w n P .  Also, to ensure that the velocity 
field is solenoidal ( V - u  = 0), the vector Fourier coefficient is rewritten as 
Snip  = Smnp A K,, where Smnp = $ ( a m n p ~ i b m n p )  for all n. Here amnp and bmnp are 
real, random vectors uniformly distributed over all directions and statistically 
independent, in the sense that 

< a m , n , p , a m , n , p , )  = 0 if m1* mz’n1 * n2 or PI * ~z 

because the flow is homogeneous and isotropic. 

2.1. The velocity field 

Hence, following Kraichnan (1970) and Drummond et al. (1984), (2.1) is written as 

m-1 n=l  p=i 

+ ( b m n  p A &n) sin { K m n  * X W n p  t> ]> (2.2) 

where k,, = K,,/k, and k ,  = I K , , ~  for all m. 
The statistical distribution of amnp,  b,,, and the distribution of K,, are defined 

in $2.5.  
The time dependcnce of turbulence is actually determined by the nonlinear 

dynamical interactions between different modes (e.g. vortex stretching) and by the 
kinematic process of non-uniform unsteady advection of the vorticity field by the 
velocity field, which implies large-scale eddies advecting small-scale eddies (figure 1). 



Kinematic simulation of homogeneous turbulence 285 

0 . 4 ' ~ ~ " ~ ~ ~ ~ ' " ' " " ~ " ~ ~ ~ "  

0 10 20 30 40 50 k, 

Wavenumber, k 

FIGURE 2. Splitting the von Kirmtin energy spectrum into large and small scales. 
E ( k ) + k "  as  k t O  and E ( k ) + k - a  as  k - t o o .  

The novel feature of our simulation is modelling these effects by choosing wnP and 
K,, appropriately. 

The temporal structure of the flow is determined by the frequency wnP which we 
model in two different ways, and which we refer to here as the kinetic simulation 
sweeping model (henceforth KSSM) and the kinetic simulation inertial model 
(henceforth KSIM). In  KSSM we divide thc velocity field into large- and small-scale 
fields (ul and us) using a cut-off wavenumber k, to divide the wavenumber range 
(figure 2). The velocity field is given by the sum of these two fields: 

(2.3) 

The temporal fluctuations of the small-scalc velocity field are partly caused by the 
non-uniform advection of the small scales by the large scales and partly by their 
dynamical interactions which lead to a decorrelation in this randomly moving frame 
of reference. In KSSM we model onP to account for both these processes. 

I n  KSIM we focus on the relative motion of particle pairs a t  small separations, so 
the large-scale field can be neglected ; in the small-scale field u,(x, t ) ,  we model wnP by 
choosing a finite number of temporal modes for each wavenumber (figure 3). (As 
expected the statistics of the smallest scales derived by the two simulations are 
equivalent.) 

Sweeping Model : KSSM 
For KSSM we assume that the large eddies move randomly and independently of 

each other ; this corresponds to a random shift in the relative phases of the large 
modes. Alternatively they might be computed by a large-eddy simulation. Also, in 
KSSM the time dependence is modelled in the simplest possible way by assuming a 
single frequency mode for each wavenumber mode. Therefore, we suppress the ' p '  in 
all the terms in (2.2), i.e. P, = 1 ,wnP = w,. Also we take a single directional 
wavenumber on each shell in wavenumber space, so that M0 = 1.  Then amnp+an,  
bmnp + b,. These random vectors a,, b,  and the wave vectors K, are defined in 52.5. 

The large-scale motion u1 is modelled by N,-1 modes in which the time 
dependence is expressed as a random time-varying displacement of the spatial 
Fourier modes : 

u,(x, t )  = c UI, (X ,  t ) ,  

u(x ,  t )  = U I ( X ,  t )  + u,(x, t ) .  

N,-1 

( 2 . 4 ~ )  
12-1 

10-2 
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86% w )  

t 

FIGYRF 3. The probability distribution of w .  The,qeak in the distibution (for a given k) lies at 
+Aerkj a,n$ there is another (not shown) at -he@. For KSSM, w is a &function, i.e. P ( w n )  = 
d(w,+AeW);  for KSIM, wnm is chosen from the probability distribution of P ( w ) .  

where 

Ul,(X, t )  = ( a ,  A kn)  CoS{Kn.(X-C,(Kn, t ) ) )  

+ (6 ,  A k,) sin { K ~ .  ( X - c n ( & ,  t ) ) } .  (2.46) 

Here w, = K,.C,, where < , ( K , , t )  is a random displacement for the wavenumber K, 
which is induced by a random Gaussian advective velocity Wk,Jt). A t  time t = 0, 
C,(K,,~) = 0, thus 

n 

Since the eddies are advected by other eddies, it is assumed that WJt)  is a random 
vector field with zero mean and variance equal to that of the nth mode of the velocity 
field, i.e. ( Wkn(t)) = (ufn(x, t ) ) .  Since thc large scales of homogeneous isotropic 
turbulence are Gaussian and approximately Markovian, i t  is assumed that the 
modes Wk,(t) of the advective velocity field have exponential correlation functions 
and timescales equal to the times taken by large eddies to pass each other, i.e. T, = 

The spatial structure of the small-scale field us is modelled as in (2.4). The temporal 
variation of the small scales (for lengthscales greater than the Kolmogorov scale) is 
given in terms of u1 and us by the equation 

l/(fTw k,). 

au,/at = - ul. vu, - [(Us. v) U, + (u,. v) Us+ i /pvpl.  
J 

V (2.6) LY-J- 
advection decorrelation 

The advection term which is the contribution of large scales advecting small scales 
can be modelled by considering the neglect of the ' decorrelation ' terms. Thus the 



Kinematic simulation of homogeneous turbulence 287 

Small scales at r 

FIGURE 4. Diagram showing the distortion of the small-scale velocity field by the large-scale 
velocity field. The velocity components u(z) and v(y) due to a single wave mode change aa the small 
field is displaced and deformed by the large field. But the change in vorticity is not explicitly 
simulated. 

velocity a t  each point x would be equal to its value at an earlier time ( t  = 0) at the 
position Xfrom where a material point was advected to  x (figure I ) .  But as a material 
point is advected by the large scales, the velocity changes on a timescale l/w’,. 
Thence 

NC 

u,(x,t)  = [(a, Ak,)cos[~,.X-wW:,t]+(b, r\k,)sin[~,.X-wW:,t]], (2.7) 
la-N, 

where X = ~ ( t )  - ul(xl(t’), t’) dt‘, 
J O  

and dx,(t’)/dt’ = u,(x,(t’), t’) given xl(t’ = t )  = x. 

a,, b, and 2, are specified in $2.5. 
The aspect of the interaction between modes that is correctly modelled by KS is 

simply the random advection of u, by ul. But since u, is non-uniform as well as being 
unsteady there is some deformation of the small-scale field by the large-scale motion 
u1 (see figure 4) and therefore in KSSM there is a small correlation between au4/ax, 
and au,,/ax,. This leads to small negative skewness, i.e. < 0. But the 
magnitude of the skewness is incorrect because KS does not simulate the dominant 
nonlinear interactions such as vortex stretching (Fung 1990). 

Clearly the value of u1 used in the calculation of us is the same for all k > k,, since 
we have assumed that all small eddies are carried along by the large eddies. This 
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would be a correct kinematical model if there were a gap in thc spectrum, separating 
the wavenumber range into large and small scalcs. No attempt is madc to smooth the 
transition between the large- and small-scale fields; this means that, as k, varies, the 
frequency spectra and time correlations change (as described later). In reality, a 
high-wavenumber eddy is embedded in a continuous spectrum of eddies, and 
therefore a small ‘small eddy ’ is swept by larger ‘ small eddies ’ as well as by energy- 
containing eddies. This effect can be neglected if the rate of change of the ‘small 
eddies ’ is faster than the effect of sweeping by the larger ‘ small eddies ’. Therefore for 
this form of KSSM the range of wavenumbers in the small-scale motion should be less 
than about 30 (for an inertial subrange). (The implications of this result are 
considered in Q 4.1 ). 

Inertial Range Model : KSIM 

We use a second model, KSIM, to investigate the relative motions of a pair of 
particles when the separations are small. In that case the motion is dominated by 
small scales and therefore in KSIM, we simulate only the small scales in a frame 
moving with the large eddies, using (2.2).  As we show later, this approach is 
consistent with that of KSSM, for the small scales. The temporal structure of the 
small-scale field is studied in more detail than in KSSM by introducing a finite 
number (typically, P, = 1 or 3) of frequencies ( w n p )  a t  each wavenumber mode, so 
that each frequency mode is associated with a different wave vector. 

2 .2 .  Continuity 

In KSSM the ‘sweeping’ of the small scales by the large scales is non-uniform in 
space, which leads to the gradients of small scales being affected. Then continuity is 
not explicitly satisfied. Taking the divergence of the velocity field yields terms such 
as (a, A R, ) .V(K , -X)  which are non-zero because X - the displacemcnt due to the 
large scales - is a function of x and K. 

In  order to satisfy continuity i t  is necessary in principlc for the wavevector K (and 
therefore frequency w’)  to be a function of time (the details are given in Appendix A). 
This effectively models the rotation and distortion of the small-scale wavenumber 
motion by the large-scale velocity gradients. By ncglecting the variation of K with 
time the error in Ilaui/axill is proportional to a2u,/ax2. 

The errors in the continuity equation were evaluated numerically (Fung 1990) and 
when normalized on Ili3ulj/axill were very small ( 5  0.05) .  By incorporating the 
correction to  in the computation, it was found that the second-order statistics were 
only affected by about 10%. 

In KSIM continuity is satisfied exactly because there is no non-uniform distortion 
of the small-scale field by the large scales. Note that where the two methods are 
compared there is a discrepancy of no greater than 10 %. 

2.3. Eulerian spectra 
In both forms of KS, the energy spectrum of the simulated flow, E,(k), is 
approximated by the energy spectrum E ( k )  of the turbulence that is to be simulated. 
In  this paper we consider a function E(k)  (figure 2 ) ,  which describes measurements 
of turbulent flows. For large-scale motion, E ( k )  cc k4, and for small-scale motion in 
the inertial range, E(k)  cc k-9. This is the ‘von Karman spectrum’ (Hinze 1975) 
whose properties were also discussed by Hunt (1973), namely 

E,(k)  = E ( k )  = yg,k4/(g,  + k z ) y  for 0 < k < k,. ( 2 . 9 ~ )  
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It is assumed that the microscale motions (k > k,) are simple straining motions 
caused by the eddies in the inertial range so that 

E,(k) = 0 for k > k,. (2.9b) 

Note that E ( k )  is normalized to  give 

JomE(k) dk = t ( u ( x ,  t ) 2 )  = %, (2.10a) 

and k is normalized on the integral lengthscale, derived from the energy spectrum 
(Monin & Yaglom 1975) by 

L,, = ~ J ~ ~ k - ' & ( k ) n k / J ~ ~ E ( k ) d k  = 1. 

Thence the normalized numerical constants in (2.9) are given by 

(2.10b) 

(2.11) 

where in the limit of k,,+ m ,  y = 1.  For the case of k, = 50, y = 1.1. 
In KSIM the energy spectrum in the inertial subrange is modelled without 

considering the small effects of intermittency on the spectrum (Kolmogorov 1962). 
Then 

\ E ( k )  = ol,eik-i for k, < k < k,; 
(2.12) 

for k < k, and k > k,, 

and the Kolmogorov constant ak is chosen to be 1.5 (Grant, Stewart & Moilliet 1962 ; 
Gibson 1963) ; e is the rate of dissipation of kinetic energy per unit mass. 

In KSIM the frequency dependence is modelled by assuming that the energy a t  
each wavenumber is spread over a range of frequencies ( -  a,(k)) around a 
characteristic frequency w(k) in a Gaussian distribution (see figure 3), so that the 
small-scale wavenumber-frequency energy spectrum (in a frame advected by the 
large scales) is 

g S ( k , w )  = E(k)exp{-w'2/2~~(k)}/(2x)~a,(k), (2.13) 

where w' = w-w(k) and J-",&s(k,w)dw = E(k). 
Since the simulation is for small-scale turbulence at high Reynolds number, w(k) 

and u,(k) must both be determined by inertial-range scaling; we take w(k) and aJk)  
both equal to dd (see Leslie 1973). Physically this correponds to the fact that  smaller 
eddies change with time more quickly. (The decorrelation of a single wavenumber of 
a scalar field in turbulence on this timescale was measured in an ingenious 
experiment by Fermigier 1980.) 

E ( k )  and L,, are normalized as in (2.10). 

2.4. Maximum wavenumber k,, cutoff wavenumber k,, and Reynolds number 

The choice of k,, the maximum wavenumber of the energy spectrum, determines 
both the Reynolds number and the integration time step. In  a viscous flow at high 
Reynolds number, k,l - Ref (Batchelor 1953), where 1 - v3/e is the lengthscale of the 
energy-containing eddies and v2 = (u;) is the velocity variance. Thus increasing k, 
increases the Reynolds number of the simulation. At separations less than k;l, the 
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velocity field is simply a uniform straining motion as assumed in many previous 
models (Batchelor 1959). Increasing k, also decreases the time step which can be used 
in computing velocities and trajectories of fluid elements since the time step must 
be less than the inverse of the highest frequencies in the flow, and this increases 
the computational time. For KSSM we have used k, = 50. In KSIM we have taken 
k, = 1 and varied k ,  between 10 and 400 to investigate the effect of varying the size 
of the inertial subrange. 

In  KSSM the cutoff wavenumber k, marks the division between the large and the 
small eddies, and determines the proportion of the total energy assigned to each of 
the velocity fields. We have no a priori argument for determining k,, but we have 
found that the Eulerian and Lagrangian autocorrelations, R,E,(7) and Rt1(7) are 
sensitive to k,. At small 7 the velocity fluctuations seen by a stationary observer are 
caused primarily by large-scale energetic eddies advecting small eddies past the 
observation point, whilst the fluctuating velocities experienced by a fluid element are 
due primarily to the time-evolution of the small-scale field. Since the large-scale 
eddies contain most of the energy, i t  follows that the Eulerian autocorrelation a t  
small T must decay faster than the Lagrangian autocorrelation (Shlien & Corrsin 
1974; Tennekes 1975). That is, Rf1(7) > RF1(7) for small 7. This also follows from 
integrating the Eulerian and Lagrangian spectra to obtain the correlation functions 
at  small time 7 (see $4.14). Some experimental evidence and the theoretical argument 
of Reeks (1977) suggest that, at large 7, RE(7) > Rf1(7). This implies that the curves 
must cross over (see figure 6 below). For small values of k,, RE(7) exceeds Rf1(7) for 
all 7 ,  and, for large values of k,, Rf1(7) exceeds R,E,(T) for all 7 .  However, there is a 
narrow band of values for k, in which the curves cross in the expected manner, and 
we have located k, within this band, a t  k, = 5.0 (somewhat arbitrarily). This 
apportions the energy between the large- and the small-scale fields in the ratio 5.8 to 
4.2 (see Appendix B). 

As one might expect, spatially determined variables - such as pressure and 
Lagrangian quantities - are not sensitive to the choice of k,, but the Eulerian two- 
time correlation and frequency spectrum are sensitive to this assumption (which 
explains in part why the relation between Eulerian and Lagrangian correlations is 
not likely to be universal). 

In  KSIM, k, represents the lowest wavenumber in the simulation; in all these 
computations i t  was set equal to 1. 

To determine the Reynolds number we use the relationship Re - [k,,(u:)!/e]t. (This 
estimate is only useful to indicate how Re varies. For low Re, it does not agree with 
the computations of Yeung & Pope 1989.) To estimate E ,  we equate the energy in the 
small-scale field, whose energy spectrum is E(k) ,  to the energy in the equivalent range 
of the inertial-subrange spectrum, assuming 

from which 

For KSSM, k, = 5.0, k, = 50.0 and (uf,) = 0.42, giving E = 1.066 and a Reynolds 
number of 170. In KSIM, k, = 1.0, (u:,) = 1.0 and k, varies between 10 and 400; the 
corresponding Reynolds numbers vary between 30 and 6390. Full details of all 
the parameters are given in table 1. (In KSIM the spectrum corresponds only to 
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Models k, k, (u:)  (u:) Nk € L,, At Re 

KSSM 5.0 50 0.58 0.42 38 1.066 1.00 0.0075 170 
KSIM 1.0 10 - 1.00 35 0.783 1.17 0.0100 30 
KSIM 1.0 100 - 1.00 300 0.585 0.99 0.0100 950 
KSIM 1.0 400 - 1.00 1200 0.560 0.96 0.0025 6390 

TABLE 1 .  Various parameters of simulations 

the inertial subrange of the full turbulence spectrum. Thus, the total energy in the 
' virtual ' von Kirman spectrum that would contain KSIM is about double that in the 
inertial subrange and the virtual Reynolds number is Re* x 41Ze.) 

2.5. Determination of k,, K,,, a,, and b,, 
The values of k, have to be chosen by discretizing the wavenumber space into a finite 
number of modes. In KSSM, we use six modes for the large eddies (0 < k, < 5.0) and 
32 modes for the small eddies 5.0 Q k, < 50. The wavenumbers are distributed as 
follows : 

0 < k, < 5.0, 

5.0 < k, Q 50 
k, = 5.0 x n/7 ,  
k, = 5.0(50/5.0)(v), 

n =  1,2 ,  ..., 6 ;  
n = 7 , 8 , .  .. ,38. 

A geometric progression has been chosen for the high wavenumbers of the small-scale 
motions to ensure that each mode carries approximately the same energy and to 
exclude the possibility of cyclic repetition of the velocity field. 

In KSIM, the modes are distributed linearly according to the relationship 

k, = k,+(k,-k,)(n-i)/(N,-l), n = 1 ,..., Nk, 

in order to model the motion of particle pairs at small times and small separations, 
with a large number of modes a t  high wavenumber. The effects of different 
distributions of k, on the statistics have been investigated by Malik (1991). 

In any one realization, the unit vectors R,, are chosen a t  random from a 
population distributed isotropically on the surface of a unit sphere. MB wavevectors 
K,, are chosen on each spherical shell of radius k, but with differing and random 
directions. In both models the energy E,(k,) at each wavenumber k, is obtained by 
integrating the energy spectrum over a range of wavenumbers near k, : 

(2.14) 

where 6k = (k,-kc)/(iVk-l) and y = rE(k)dk/J :E(k)dk,  
0 

y being a factor to compensate for the energy contained beyond k,. The energy is 
assigned to  each wavenumber K,,  through the choice of a,, and b m , .  

For each mode to be independent and the velocity field to  be non-divergent, 
statistically stationary, homogeneous and isotropic, it is necessary that : 

a,,, b , , ,  K , ,  are independent of each other; ( 2 . 1 5 ~ )  

the distribution of K, ,  is isotropic ; (2.15 6 )  
( ( a m n ) i )  = ( ( b m n ) t >  = 0, i = 1 ,2 ,3 ;  ( 2 . 1 5 ~ )  

( ( a m n ) t  ( a m n ) j )  = ( ( b m n ) i  ( b m , a ) j )  = 0, (2.15d) 
< ( a m , ) : >  = ((brnn);), i = 1,2,3. (2.15e) 

i 9 j; 
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Then from (2.2), the energy a t  each wavenumber is given by 
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M,, PI., 

m=l p = l  
(ui) = C C ( I a m n p A ~ m n 1 2 C o s 2 ( K m n . X + W n p t ) )  

+ (Ibmnp Akm,12sin2 ( K m ; x + u n p t ) ) .  (2.16) 

We scale the velocity so that (u ; )  = (ui) = (ui) = 1, and ( 1 ~ 1 ' )  = 3. The energy 
spectrum E(k)  = zP(k), where P ( k )  is the probability distribution of k-mode in 
k-space. Substituting in (2.15u-e), (2.16) reduces to 

2 Mn f'* 2 Mn PI,> k n f 8 k j 2  

m=l p = l  m = l  p = l  kn-6k/2 
(ut)  = 5 C C <Iamnp12> = jj C C (Ibmnp12) = 37 P(k)dk. (2.17) 

Therefore amnp and bmnp have to be chosen from distributions which satisfy (2.15~-e) 
and (2.17). We have used two different methods to do this. 

In  KSSM (where P, = 1, Mo = 1 and amnp = u,), the vectors a,  and b, are picked 
independently from a three-dimensional Gaussian distribution with a zero mean 
vector and covariance matrix (u;) 6i j .  

In KSIM (where eo = 1 or 3, Mt, = l ) ,  amnp and bmnp are distributed isotropically 
on each sphere of radius k, with lamnpl = Ibmnpl. Also, the energy E,(k,) at 
wavenumber k, is distributed equally over the eo frequency modes w n P .  

2.6.  Computational method 
For each run of the simulation, statistical quantit,ies were obtained by taking the 
ensemble average of many realizations; most of the results in this paper were 
computed from 100 realizations of the velocity field. All the spectra in this paper are 
the average of 100 spectra. It is important to take the average of many realizations 
(rather than just allowing the simulation to run for a long time) because the initial 
choice of wave vectors, although random, determines much of the 'structure' of the 
velocity field. 

The Eulerian velocity field is computed a t  fixed points. Lagrangian statistics are 
obtained by tracking fluid elements through the flow, by integrating the equation 

ax( t ;a ) /a t  = u [ x ( t ; a ) , t ] ,  with x( t  = 0 ; a )  = a,  (2.18) 

using an extended Runge-Kutta scheme modified by Drummond et al. (1984) for 
KSSM and a second-order Taylor expansion for KSIM (Malik 1991). 

For each realization of the velocity field the trajectories of 27 particles (in the case 
of KSIM, 27 pairs of particles) were computed simultaneously. The particles were 
released a t  the nodes of a 3 x 3 x 3 lattice, spaced 6 integral lengthscales apart to 
minimize any initial correlation between the motion of the different particles. They 
were then tracked simultaneously for the required number of time steps and as many 
realizations as possible were generated, in order to produce accurate statistics. 

The time step is determined by the need to track the motion of fluid elements a t  
the smallest lengthscales. In  KSSM the smallest wavelength is 2n/k,,, which is about 
O.12Ll1, where Ll,(= 1.0) is the integral lengthscale. We require At to be about 
l/lOth of the smallest timescale, which is of order 0.12L11/~u, i.e. At < 0.012L11/~,. 
After some tests to ensure that the results were independent of At we chose 
At = 0.0075. The computations for KSSM were carried out in single precision on the 
Cray-2 computer at UKAEA Harwell Laboratories, and on the Cray XMPj48 a t  the 
Rutherford Appleton Laboratory for KSIM. 

The method that we have developed is particularly useful and easy to implement 
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on parallel computers. Since we are investigating passive fluid particles, each 
processor in the parallel array can be assigned a particle (or pair of particles) and then 
the full efficiency of the parallel machine can be exploited. Some of the computations 
for KSIM were performed on an ICL Distributed Array Processor (DAP) ; this is a 
64 x 64 array of processors, capable of running a t  about one third of the speed of the 
CRAY XMP/48. The method is also very well suited to exploit the vector processing 
capability of CRAY machines, and the maximum computational speed that has been 
obtained with KSIM on the CRAY XMP/48 is 160 MFLOPS. On this machine, an 
ensemble of 2700 particle pair trajectories for k , /k ,  = 10 took about 15 minutes CPU, 
and about 4 hours CPU for 1080 pairs a t  k , /k ,  = 400. 

2.7. Space-time structure of small eddies 
From the frequency-wavenumber relationships used in the algorithms of the 
simulations (KSSM and KSIM), it is possible to  derive analytically the space-time 
correlation and structure functions in the limit of an infinite number of modes 
N,+ co. 

First consider how the Eulerian spatial structure function Dll(r)  is related to  the 
spectrum and how i t  depends on the extent of the inertial range ( k , / k , ) ,  where 

D,,(r ,O,0)  = <[u,(x+r, t ) -u , (x , t ) l2 ) .  (2.19) 

For an infinite inertial subrange, 7, < r < L ,  

D,, = D z ( r ,  O , O )  = C'&G, (2.20) 

where C' = gT($) a, (Monin & Yaglom 1975). But with a finite extent of the inertial 
subrange of the spectrum q5,,(kl)(kc < k < k,) ,  

q5,,(k,) (1  --os k ,  4 dk, 

(2.21) 

The difference, defined by p ,  between D,, for finite and infinite ranges of the inertial 
range is 

Dz ( r )  - D,, ( r )  - 0.5( k ,  r )% + 2( k, r)-i - 
D z  r($) p ( r )  = 

For k , /k ,  = 10, in the range 0.05 < r < 0.15 the maximum value o fp  is about 40%, 
but as k , /k ,  is increased the difference decreases; for k J k ,  = 100, 200 and 300 the 
maximum value of p drops to 28%, 15% and 10% respectively, which can 
significantly reduce relative dispersion (see $4.2). 

Now consider an observer moving with the large eddies and measuring the changes 
in the velocity (say on a scale k-l ,  where k is the inertial subrange). It is assumed that 
the observer moves at a velocity V, which is locally averaged over a scale lo,  where 
k-' 4 I ,  < Lo. Thus V, is independent of I , .  The structure function for the velocity a t  
times t and t+7,  measured in this randomly moving frame (which we call 
' Eulerian-Lagrangian '), is determined by how small eddies change with lengthscales 
k-' - rvk and velocity vk - dk- ; ,  and vary with time, which is modelled by the wk 
term in (2.7). Therefore, by scaling, 

SZL(7) = (U1(X,t)UI1(X+ V , t , t+7) ) - (u l (X , t )2 )  = 2xcELs7. (2.22) 
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If the observer actually travels with a fluid clement (with displacement ((7) = 
Jiu(x( t ' ) ,  t') dt'), not only does the velocity change on this inertial-range timescale 
but the fluid element moves across the local velocity gradient. Since these gradients 
also scale on E ,  the local Lagrangian structure function is 

5f1(7) = ( U , ( X ,  t ) U l ( X + 5 , t + 7 ) ) - ( ( U 1 ( X , t ) 2 )  = 27CcLs7 (2.23) 

(Inoue 1951 ; Monin & Yaglom 1975). The above argument suggests that CL > CEL. 
To understand the difference between the Eulerian-Lagrangian and Lagrangian 

structure functions, consider two observers starting at x, at  time to and moving with 
velocity 6. At time 7 later the (EL) observer has moved a distance K7, while the (L) 
observer has moved a distance $ :;+' u dt ; the distance 1 between the observers a t  time 
7 is of order E&$ (see Appendix C). Therefore the difference between the root-mean- 
squared velocity of the observers is of order I @  - e%, and so Sk1 cannot equal SF!. 
But these two structure functions are of the same order, and the coefficients CL and 
CEL must also be of the same order. 

For SF! to have the high-Reynolds-number limit defined by (2.22) and for E ( k )  to 
have the inertial-range form of k-:> i t  is necessary that 

(2.24) wk = hdk%, 

since in the inertial range the timescale is proportional to s - k ; .  In  KSSM we choose 
AE = 1.0, to  give the correct forms for the Eulerian and Lagrangian correlations 
functions; A is a constant of order unity, which can be related to the measurable 
coefficient CEL (see Appendix C) : 

h x 2CEL/a,. ( 2 . 2 5 ~ )  

I 2  

Thus for arc = 1.5, E = 1.066, he; = 1.0, we have 

CEL = 0.73. (2.25b) 

In KSIM, there is a Gaussian distribution of frequencies for each wavenumber. The 
theoretical value of CEL is found to be 0.81 (Malik 1991). 

Note that the change in the mean-square velocity of fluid elements over short 
times depends only on E and the isotropic structure of the small scales, not on the 
critical wavenumber k,. Note also that if the small-scale turbulence does not change 
with time as i t  is being advected by the large scales, then h = 0, and SEL and SL 
would have the same form as SE. This does not correspond with known results for 
small-scale turbulence (which are presented later). 

The simulation KSSM is based on the assumption that the large-scale Gaussian 
velocity field u,(x,  t )  randomly advects the small-scale field u,(x, t )  (see figure 1). It 
follows from (2.7), (2.12) and (2.24) that a t  small scales ( k  > k,), the wave- 
number-frequency energy spectrum has the approximate form 

where VZ, = f ( l  q*), w+ = ( w + h ~ f k $ )  and w- = ( w -  hhesk;). (The second terms in w+ and 
w- represent the decorrelation of the small scales as they are advected.) This 
expression follows exactly from the model if the large scales are uniform advective 
motions and the small scales do not change with time, in which case a = 1. When the 
frequency w corresponds to large eddies advecting small eddies (i.e. w - kUo),  the 
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second terms in w, and w- are much smaller than the first, and then, in a fixed frame, 
the spectrum has the form 

exp{ -&2/(akU,)2} 
b ( k ,  W )  = E ( k )  

(27C)f akU, 
(2.27) 

The form of the model for b ( k , w )  in (2.27) agrees with the results of a direct 
numerical simulation of homogeneous turbulence by Hunt, Buell & Wray (1987). 
They found that the wavenumber-frequency energy spectrum had a similar form to 
that given in (2.27). However, they obtained a value of about 0.5, rather than 1.0, 
for the coefficient a. This was probably due to the low Reynolds number of the 
simulation, in which there was no inertial range. Chase (1970) showed that if a = 1 
there is good agreement between wind tunnel experiments and the Eulerian 
autocorrelation derived from (2.27). 

For high-Reynolds-number turbulence in the inertial subrange, the Eulerian 
frequency spectrum $,",(w) of one component of velocity, u1 say, measured a t  a point 
(moving with the mean flow) is determined by the large-scale advection of eddies past 
the observer, and has the form (Tennekes 1975) 

$,",(w) = /omB(k,w)dk = CE(cUO):w-% for k i d  2 w 2 k!&, (2.28) 

where U, is the r.m.s. velocity of the turbulence. If the large scales are isotropic and 
Gaussian and the Reynolds number is large enough for there to be a large separation 
in scales between the energy-containing eddies and those in the inertial subrange, 
then C" should be independent of the large scales and should be a universal constant. 

In  the inertial subrange where E ( k )  = a,sfk-%, it follows that, by integrating (2.26) 
analytically or numerically, the frequency spectrum a t  a point has the form given in 
(2.28), and the constant CE is 

CE = 0.8 for a = 1.0. (2.29) 

Since as Re+ 00 random advection takes place on all scales (not just for k > k c ) ,  in 
a real turbulent flow, U, in (2.28) can be replaced by (u;);. 

2.8. Pressure field associated with KS velocity fields 
From any simulation of a velocity field it is possible to compute the pressure field, 
and kinematic simulation is no exception. In $5, we compare our simulations with 
theoretical predictions. 

For the scale of motion consider here, the pressure is related to the velocity field 
by the equation 

( 1 1 ~ ) v ~  = -au/at-(u.v)u.  (2.30) 

Decomposing the velocity and pressure fields into large- and small-scale fields, we 
obtain 

- - ( l lP )V(P l+P, )  = acul+u,)/at+cu,+u,).V(ul+u,). (2.31) 

Averaging the pressure over a small region in space, with characteristic length L ,  
yields the equation for the large-scale pressure field: 

- (1  / p )  vp, = au,/at + u1 * vu, + ((us * VU,)) , (2.32) 

where (< )) denotes the spatial average, ((u,)) = 0 and ((ul)) = u,. Subtracting 
this from (2.31), yields the small-scale pressure field : 

- ( i /p)  vps = au,/at + us. vu, - ( (us.  vu,)) +us .  vu, + ul. vu,. (2.33) 
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The large- and small-scale pressure fields can be computed from the known Fourier 
coefficients for the large- and small-scale fields. This is a double sum over all possible 
wavenumber pairs, and is computationally expensive. Details are given by Fung 
(1990). 

3. Simulation results for an Eulerian field 
3.1. One-point statistical test of the flow j-ield 

Various statistical quantities have been computed from the simulated flow field in 
order to check that it has the desired properties. Using a large number of realizations 
(2 100, i.e. more than 2700 particle trajectories since 27 particle trajectories are 
simulated in each realization) of KS, it is found that 
(a ) (u(x ,  t ) )+Ok0.03;  

(c)(ui(x,  t ) )  + 1 f0.05, i = 1 ,2 ,3 ,  for all x and t (isotropic, homogenous and 
stationary). 

Most experiments and computations of homogeneous, isotropic turbulence have 
shown that the velocity a t  one point has an approximately normal distribution. The 
moments of order three and higher (e.g. skewness and flatness) are often used as 
indicators. The computed flatness factors ( u ~ ) / ~ ( u T ) ~  and < ~ ~ ) / 7 . 5 ( 4 ) ~  converge 
to the values of 1.0f0.02 and 2.0k0.3  respectively, and the skewness factors 
(ut)/(u",>t and (u:)/(ui)i converge to  the value 0.0&0.05. The mean values are all 
equal to those for Gaussian distributions. 

One-dimensional wavenumber spectra (0 < k < 75) q5ii(kl), where i = 1 , 2 , 3  at  t = 0 
have been computed from KSSM, they have the theoretical slope of -5 in the range 
2 < k < 70 and a sharp cutoff a t  k ,  = 75 since there is no energy a t  wavenumbers 
higher than 75 at the start of the simulation. After about ten integral timescales, the 
typical time of simulation, there is a small difference between the spectrum q5ii(kl, t )  
and its initial form q5ii(kl,0) for k 2 30 because a small amount of energy is 
transferred to wavenumbers higher than k, = 75 from wavenumbers lying between 
30 and 75, caused by the non-uniform advection of the small-scale eddies by the 
large-scale eddies. There is no transfer of energy in t,he KSIM simulation which has 
no advection. Thus over the time period considered here, for large scales and over 
most of scales in the inertial range and larger, both simulations are stationary. 

( b ) ( x ( t ) )  +OkO.OS; 

3.2. The spatial structure fu,nction 
The structure function D,, (as defined in (2.20)) was computed for both KSSM and 
KSIM and the results are plotted in figure 5. The straight line portion has a slope of 
approximately and the constant C' is equal to 1.7; this should be compared with 
the experimental value of 2.0 kO.1 (Townsend 1976). The theoretical correction 
terms in (2.21) for finite extent of the inertial range are consistent with differences 
between the asymptotic theory and simulations in figure 5. See also Anselmet et al. 
(1984), Van Atta & Chen (1970). 

3.3. Eulerian autocorrelation and frequency spectra 

The autocorrelation of the fluctuating velocity at a point, RE(r),  is presented in 
figure 6. It is positive for all 7.  The integral timescale TE is defined as J,"R,E,(7)dr 
(Taylor 1921) but it can be difficult to calculate this from a record of finite duration 
(Comte-Bellot & Corrsin 1971) so we define it as the value of r a t  which RR falls to 
1/e of its value a t  r = 0. On this basis we obtain T E  = 0.8. 
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FIGURE 5. The structure function Dll(r) ( = C e % )  showing a slope over EI limited range. 

I - - ' ' I ' . . - I . . ' * I *  , ' . I "  

0 0.5 1 .O 1.5 2.0 
1 

FIGURE 6. The Eulerian RF1(7) (----) and Lagrangian RG(7) (-) autocorrelation functions, 
there is a crossover at 7 z 0.2. 

The grid turbulence measurements of Favre, Gaviglio & Dumas (1957) and 
numerical simulations of Moin & Moser (1989) for channel flow, Squires (1990) for 
decaying grid turbulence and Hunt et al. (1987) for stationary, homogeneous 
turbulence (where there is a significant component of turbulence at zero frequency) 
indicate that if TE is normalized in terms of the r.m.s. velocity and the integral 
lengthscale L,, it is equal to the coefficient p" defined by 

where p" varies between about 0.5 and 1.0 depending on the structure of turbulence. 
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FIGURE 7 .  slope. 

Snyder & Lumley (1971) inferred a value of /IE zz 3 by interpreting their heavy- 
particle correlations as representative of Eulerian correlations and light-particle 
results as representative of Lagrangian correlations. It is interesting that in our 
simulations of high-Reynolds-number turbulence, for different values of k, (2.5, 5.0 
and 10.0) PE was found to vary, in this case between 0.5 and 0.9, which are somewhat 
less than the previous quoted values (see table 2 below). In our simulation the larger 
values of k, correspond to relatively more energy being in the large-scale sweeping 
motion u1 and this explains why /I" increases as k ,  increases. 

Figure 7 shows the computed form of the Eulerian frequency spectra $,",(o). Over 
most of the inertial range (10 < k < 50), the slope is equal to  -5, showing that the 
advection has a much greater effect on the frequency spectrum for a fixed observer 
than the decorrelation of the small eddies as they are advected by the large scales. 
The computed value of CE is 0.82. This is close to the value of 0.78 derived in (2.29) 
in the asymptotic limit for very small-scale turbulence, whose advection by the large 
scales does not depend on their spatial structure. For other statistics this is an 
inappropriate assumption, as we show in $4. 

3.4. How can we quantify 'Structure' in a flow 'z 

The identification of certain significant regions in each realization of flow can provide 
an important method for analysing the dynamics of the flow and also provides a 
criterion for assessing approximate models of the flow fields. 

Following Perry & Chong (1987) and Wray & Hunt (1990), the flow structure can 
be objectively characterized in terms of the local values of the deformation tensor 
u~, , ,  (specifically the second invariant I1 = (au,/ax,) (auj /axi)  of the velocity field) and 
the pressure p .  The flow is divided into high-vorticity regions, corresponding to 
regions of high swirl where I1 < -II,,,, p < -prms, convergence regions (C), 
where I1 > II,,,, p > p,,,, and streaming regions (S) where -1Irms < I1 < II,,, 
and u2 >, u:,,,~. 

Using these flow zones as a criterion kinematic simulation has been compared to 
the results of direct numerical simulations by Fung et al. (1991). It is shown that KS 
can approximately (and 'cheaply ') simulate the instantaneous flow structure in 
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homogeneous and isotropic turbulcnce ; but the zonal analysis also shows that the 
shapes of certain key features which are determined by the local dynamics arc not 
correctly simulated. In  particular, elongated vortex tubes and sheets (found in reccnt 
simulations and experiments by Vincent & Meneguzzi 1991 and by Schwarz 1990) are 
not sufficiently elongated (Pung et al. 1991). 

4. Lagrangian statistics 

4.1.1. Lagrangian integral timescale 
4.1. One-point Lagrangian statistics 

The Lagrangian integral timescale characterizes the velocity and displacement of - -  
a fluid particle as it moves through a 

TL = 

and can either be derived from the 
defined as 

turbulent flow field. It  is defined as 

p t , ( 7 )  d73 
Lagrangian autocorrelation function Rfl ( 7 ) ,  

or can more easily be obtained from the mean-square displacement ( x z ( t ) )  of fluid 
elements, since if the statistics of the turbulence are stationary, for t 9 TL (Taylor 
1921) 

(4.2) 

When t 2 TL, the slope of graphs of log{(x2(t))} are within 5 %  of the theoretical 
value of 1.0. From the graph we estimate that TL x 0.5. A similar set of computations 
for KSIM (which has a different large-scale structure) shows that TL+0.3 as 
k , / k , +  co (see Malik 1991). 

Just  as with the Eulerian timescale TE, it is constructive to express TL in terms of 
the non-dimensional constant pL, defined as in (3.1) by 

( x z ( t ) )  x 2(uz((z, t ) )  TLt .  

TL = pLL1l / (~ t ) ' .  (4.3) 

Experiments and simulations indicate that pL x 1 for grid turbulence (Snydcr & 
Lumley 1971), and boundary-layer turbulence (Durbin & Hunt 1980). However we 
obtain a value of /3" x 0.5 in high-Reynolds-number turbulence. We have also tested 
the sensitivity of pL to the critical wavenumber k,  and the results appear in table 2 : 
these show that pL is not sensitive to  k,. The ratio of TL to TE is given in table 2 and 
the ratio shows a dependence on k,  because TE depends on k,.  From KSIM, 
TJTE x 0.6 a t  high Reynolds number. In  a recent direct numerical simulation of 
isotropic turbulence (Re, in the range 38-93) Yeung & Pope (1989) found TL/TE x 0.8. 

4.1.2. Lagrangian spectrum in the inertial subrange 
Inoue (1951) applied Kolmogorov's dimensional scaling analysis to predict the 

form of the Lagrangian velocity spectrum for frequencies in the inertial subrange. Hc: 
obtained 

&(o) = CLoiP for o9 G o g o,,, (4.4) 

where o9 refers to the energy-containing part of the Lagrangian spectrum. and 
on( = ( c / v ) i )  is the Kolmogorov frequency. CL is a universal constant of order 1, 
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FIGURE 8. Average Lagrangian spectrum $ t ( w )  (=  CLcw-2) with a - 2  slope with k , / k ,  = 50. 
6J 

p1 KSSM; ---, KSIM. 

kJL k , lL  E u:/u: uBk,/e l/pL l/pE T,/T, 

2.5 50.0 0.7190 0.6393 4.4004 1.80 2.00 1 . 1 1  
5.0 50.0 0.8215 1.3810 14.5706 1.92 1.25 0.65 

10.0 50.0 0.7850 2.8961 42.4210 2.17 1.14 0.53 
0.60 

TABLE 2. Variation of Eulerian and Lagrangian timescales with different ratios of the energy of 
large-scale to small-scale turbulence 

- _ _  1.0 100.0 0.5850 ~ 

although its exact value is uncertain. One of the purposes of this simulation is to 
verify that q5fl(u) cc w-2 and to obtain an estimate for CL. 

The Lagrangian spectrum q5Fl(u) computed using both KSSM and KSIM are 
plotted in figure 8 with k , / k ,  = 50. Over the inertial range the spectrum is a straight 
line with a slope of -2 ; the deviation at high frequencies is caused by noise from the 
numerical integration rather than the energy transfer from large eddies to small 
eddies since the form of the spatial spectrum does not evolve with time (see $3.3) .  
From the graph, CL % 0.79 for KSSM; for KSIM we obtained CL 2 0.81. These are 
consistent with measurements by Hanna (1981) in the atmospheric boundary layer 
using balloons and tetroons, which suggest that CL = 0.6*0.3. From their simulation 
at R, = 90, Yeung & Pope (1989) predicted that CL should be slightly greater than 
0.64. 

When k,/k, increases much above 50, in the KSIM simulations (Malik 1991) the 
slope of the Lagrangian spectrum systematically increases above -2  and for 
k , /k ,  > 100, it tends to a slope of - 1.8. This is to be expected because with such a 
long inertial range the sweeping of thc small inertial-range eddies by the large 
inertial-range motion should be included. Without this effcct the particles are 
changing their velocity as a result of large eddies advecting particles past fixed small 
eddies; this leads to an increase in q5G(w) and hcnce a s l o p  of -5. This is consistent 
with the frozen turbulence described below. 
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FIGURE 9. Average Eulerian-Lagrangian spectrum +,",(w) ( = CEL~o-2)  with a -2-slope with 
k, = 5 and: -, k, = 50 (32 modes); .. . . ., k, = 100 (64 modes); ----, k, = 200 (128 modes); 
_.-._ , k, = 300 (256 modes). 

Taking the Fourier transform of the spectrum (4.4) yields the autocorrelation 
m 

Rfl(r) = 1 $I;(w)eimdw = (uf)-nCLsr for rL -4 r < TL. (4.5) 
J -m 

From the measurements of the velocity of particles moving through the simulated 
field, the autocorrelation was evaluated directly. Using (4.5) it was found that 
CL x 0.75 which agrees with the computation from the spectrum. 

4.1.3. The ' Eulerian-Lagrangian ' spectrum 
In $2.7 we calculated the Eulerian-Lagrangian autocorrelation in a frame moving 

with the large eddies. The Eulerian-Lagrangian spectrum $zL(w) can be obtained 
from the Fourier transform of this autocorrelation : 

Note how at  small times, RL(r) > RE(r ) ,  which is consistent with (4.5). 

f$;L(w) = CELso-2.  (4.6) 

Using KSSM we have computed $,","(u) for different values of k,, and these are 
shown in figure 9. The extent of the range where the 'slope' is -2 increases with k,. 
From the graph we estimate CEL x 0.76. This is close to the theoretical result of 
(2.25) that CEL = 0.73. 

Note that CEL is close to the coefficient for the Lagrangian spectrum (0.8). There 
is no theoretical reason why they should be exactly equal. A slightly higher result for 
CEL was obtained from KSIM, namely CEL = 0.81 ; this is even closer to the value 
of CL. This is an important finding because it suggests that the Eulerian 
wavenumber-frequency spectrum can be used to give a very good approximation to 
the Lagrangian spectrum. (This should be tested by direct numerical simulation.) 

4.1.4. ' Frozen-Lagrangian ' spectra 
To what extent do the Lagrangian spectra and the time structure function depend 

on the unsteadiness of the velocity field? We have simulated 'frozen turbulence' 
(where there is no time dependence so that u(x )  = q ( x )  + u,(x)) and have computed 
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10. Average frozen Lagrangian spectrum r$""(w) ( = CFL(au,)~w-~),  

Parameter values as figure 9. 
with a - - J  slope. 

the Lagrangian spectrum #'L(w) for different sizes of inertial subrange. The spectra 
are shown in figure 10. The straight line portions of the spectra have a slope of -8 
(and the range increases as k ,  increases) showing that the velocity fluctuations of 
particles are caused by being swept through the small eddies by the large eddies. This 
does not happen if the small eddies are themselves swept by the large eddies. The 
energy in this spectrum is lower than in the Eulerian spectrum #,",(w) for all 
frequencies, but higher than in the corresponding Lagrangian spectrum &(u) a t  
high frequencies, so that the relative importance of high-frequency components in 
fluctuating fluid particle velocity is less than for the velocity fluctuations a t  a fixed 
point ; this is an important effect for the turbulent interface problem (Carruthers & 
Hunt 1986). Therefore to simulate the high-frequency velocity and displacement of 
particles it is necessary to simulate the time dependence of the velocity field. (Note 
that Kolmogorov 1941 (in a footnote) suggested that this does not affect the 
statistics of the small-scale flow ; our results arc not consistent with this idea.) 

We also computed the Lagrangian velocity spectrum $ ~ ~ * s ( w )  for frozen small- 
scale turbulence u,(x)  (in a frame moving with the large scales), with the time 
evolution of the small scales 'turned off', i.e. wk = 0. 

From dimensional arguments or analysis 

where from KSSM the computed results are CFL = 0.41 and CFLss = 0.37 and from 
KSIM, CFLqs = 0.33. 

4.2. Relative displacement of pairs of particles 
4.2.1. Brief overview of previous results 

To model processes such as mixing and combustion we need statistical information 
about the relative displacement of particle pairs in a turbulent flow (Thomson 1987). 

The general problem is to determine how the average separation ( A ( t ) )  of a pair 
of fluid elements a t  x l ( t )  and x2( t )  varies with time, where d ( t )  = ( d ~ + d ~ + d $  = 
Ix,(t)-x2(t)l and the initial separation is denoted by A ,  (figure l l a ) .  
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FIQURE 11.  (a) Particles 1 and 2 released at time t = 0 from x,(O) and x,(O). Initial separation 
A ,  = Ix,(O) -x,(O)J + 7. (b )  The separation Y(t )  of a particle in a frame of reference which is moving 
with initial velocity uo. 

Obukhov (1941) considered the motion of particle pairs at separations within the 
inertial subrange and proposed that the value of 8 determines ( A 2 )  over this scale, 
which (when L2 P ( A 2 )  B A t )  leads to the result 

Although there have been several experiments that are consistent with the theoretical 
t3 dependence of A 2 ,  the constant G ,  has never been measured with reliable accuracy 
because of the difficulty of estimating the energy dissipation rate E .  Only Tatarski 
(1960) has estimated G, experimentally. He obtained values for G, = 0.06, 0.17 or 
0.45, but the errors could be considerable (Malik 1991). 

Novikov (1963) obtained an estimate for G, by considering the related problem of 
the displacement of a fluid element relative to its initial trajectory, and we refer to 

( A 2 ( t ) )  - A t  = G ,  d3. (4.7) 
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k, Nk 
10 35 
25 80 
50 150 

100 300 
200 600 
300 900 
400 1200 

Y 
1.60&0.20 
1.90 f 0.15 
2.30 f 0.03 
2.60f0.02 
2.78k0.01 
2.95f0.01 
2.97 f O . O 1  

Y V  

2.6050.50 
2.60f0.10 
2.65 f0 .20  
2.68 f 0 .  10 
2.78 f0.05 
2.80 f0 .05  
2.83f0.05 

c c,. 
1.28 1.80 
0.57 1.99 
0.27 2.00 
0.13 2.22 
0.09 2.33 
0.06 2.53 
0.06 2.69 

@ A (  = C/d  
1.64 f 0.10 
0.87 fO.10 
0.44 fO.10 
0.23 fO.10 
0.16f0.07 
0.1 1 f0.05 
0.10 f 0.05 

GY( = C Y / 4  
2.3f0.50 
3.0 0.20 
3.3f0.20 
3.8 f0 .30  
4.1 f0.30 
4.5 f 0.40 
4.8 +_ 0.50 

TABLE 3. Statistics of relative diffusion derived from two-particle simulations using K8IM 

these as difference statistics. The particle is initially a t  xo,  with velocity u,. An 
imaginary particle is also released with identical initial conditions, but i t  moves in a 
straight line with velocity uo, unaffected by the dynamics of the flow (figure 11 b). At 
a later time the distance and velocity difference between the real and imaginary 
particle are 

Y( t )  = Ix(t ) - (x ,+u, t ) l ,  V( t )  = u(x , t ) -uo .  (4.8a) 

From (4.2) and (4.5), the variance of Y of a particle has been calculated from the 
Lagrangian autocorrelation function RL(r )  for different times after release in the 
ranges t/r7 6 1 ,  1 6 t/r,, 6 TL/r,, and 1 -4 t /TL,  namely 

(Y"( t ) )  = (u:/373 t4 ,  G,st3 and 2 4  TLt,  (4.8b) 

respectively, where G ,  = 2xCL and u: = (u') .  Novikov (1963) used these results to 
estimate ( A 2 )  by assuming that accelerations arc only correlated over distances 
much smaller than q and for times much smaller than r,,. Therefore two particles 
should move independently, which implies that 

(4.9) 
where G,N = 2G, = 41cCL. 

Kraichnan (1966) derived a value for GA = 2.42 on the basis of a Lagrangian 
history direct interaction (LHDI) calculation which involves introducing an 
instantaneous eddy diffusivity. Lundgren (1981) used a modified LHDI calculation 
to obtain GA = 3.0, while Larcheveque & Lesieur's (1981) EDQNM closure 
approximation yields GA = 3.5. Thomson (1990) has developed a two-particle 
stochastic random flight model from which GA = 2.0. 

4.2.2. The dependence on initial separation and the inertial range 
In  each of seven different ensembles of flow fields using KSIM, the value of ( A 2 ( t ) )  

was computed for a range of initial separations. Each ensemble was characterized by 
a particular range of inertial subrange (see table 3). Five different initial separations 
were tested in each ensemble: d , /q  = 0.025, 0.05, 0.1, 0.2 and 0.4, where q is the 
Kolmogorov scale of the particular flow ( q  = 2n/k , ) .  

We have varied the number of modes (Nk and P,) for those simulations where the 
inertial subrange was less than or equal to  2-decades (100). We found that the 
minimum number of modes needed for consistent results for the mean-square 
separation ( A 2 )  varies approximately linearly with the inertial subrange, starting 
with 30 modes for k,, = 10. This determined the number of modes for those 
simulations with inertial ranges greater than 2-decades (see table 3). 

In figure 12, we have plotted the results for the case k,  = 200 in the form of log 

( d 2 ( t ) )  = 2(P( t ) )  = G,Net3, 
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FIGURE 12. Mean-square separation (d2( t ) ) /$  plotted against time t / ~ ~ ,  for an inertial subrange 
1 < k < k,, = 200 and for five values of the initial separation: d,/y = (1) 0.025, ( 2 )  0.05, ( 3 )  0.1, (4) 
0.2, ( 5 )  0.4, where T/ = 2x/k , ,  is the Kolmogorov scale; T~ = E - ~ c ; ;  is the Kolmogorov time 
microscale. 

{ (d2 ( t ) ) /q2}  against log{t/7,}, where 7, is the Kolmogorov time microscale (=  d k ; ! ) .  
Results for other values of k,  are similar. At small times ( A 2 ( t ) )  clearly depends upon 
A,, but as time increases the curves tends towards the same line. This is because the 
motion a t  scales less than the Kolmogorov lengthscale is effectively a uniform 
straining and i t  takes a finite time, t7( - E-ik;fln{q/A,}), for the particle separation 
to reach the Kolmogorov scale. When the results are replotted as log 
{ ( ( d 2 ( t ) ) - q 2 ) / q 2 }  against a false origin in time (t, = t-t,) all the curves lie on the 
same line, to within 15%. (The subtraction of r2 rather than A: is to allow a direct 
comparison with (P). In the inertial subrange where (A2(t)) $- q2,  this is not an 
important difference.) 

Then ( A 2 )  was computed for seven different sizes of inertial subrange (see table 3) 
and the results for the case when d,/q = 0.4 are shown in figure 13 plotted in the form 
log { ( (d2( t , ) )  - q 2 ) / q z }  against log{t,}. The slopes of the lines increase as k, /k ,  
increases, and the coefficient GA decreases; the values are given in table 3. In  the 
inertial subrange the relationship between ( A 2 ( t , ) )  and t, must be of the form 

( A 2 ( t , ) )  = Cti, (4.10) 

where y and C are both functions of k,/k, .  The computed values of these coefficients 
have been plotted against k,,/k, in figure 14. These graphs show that as the size of the 
inertial subrange increases, y tends to 3, as observed by Richardson (1926) and 
predicted by Obukhov. The value of C tends to 0.05. Substituting this into (4.7) 
(which was derived by Obukhov 1941 assuming an infinite inertial subrange) we 
obtain GA + 0.1, since E + 0.544 as k,/k, + co. 

Examining the difference between the structure function D,, and its asymptotic 
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FIGURE 13. Comparison of ( ( A 2 @ , ) )  - q 2 ) / q 2  against false origins in time t, = [ t - t , ( ~ l ~ ) ] / ~ ~ ,  for seven 
different ranges of the inertial subrange : 1 < k < k, = 10, 20, 50, 100, 200, 300, 400. In each case, 
we have A , / y  = 0.4. The slopes of the curves tend to 1.6, 1.9, 2.3, 2.6, 2.78, 2.95 and 2.97 
respectively. A line of slope 3 is shown for comparison. 

0 100 200 300 400 

k , l k  
FIGURE 14. Plot of the constants y. C and C,, where C = G ,  E and ( A 2 ( t B ) )  = Ct!, against different 
sizes of the inertial subrange k, /k , :  0,  y(+3 as k , /k ,  increases, as predicted from Kolmogorov's 
theory); A, C; 0,  C,(-+O.l as k, /k ,  increases). 

form, (2.20), shows that A 2 ( t )  only reaches its asymptotic form in the inertial range 
when k,/k, $= 100. We note that only in large-scale geophysical or astrophysical 
turbulence is it likely that the Reynolds number and the ratio k,/k, will be large 
enough for the Richardson-Obukhov separation to be observed. For example, in the 
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FIGURE 15. The mean square difference <y2(7))/q2 plotted against time 7 = t/7,,, for seven different 
ranges of the inertial subrange as in figure 13. A line of slope 3 is drawn for comparison. 

atmosphere, in strong convection, k , /k ,  - lo6, but in laboratory turbulence it is 
impossible to obtain a large enough ratio of k, /k , .  

4.2.3. The difference statistics 

We have computed the difference statistics, i.e. the displacement of a single 
particle relative to its initial trajectory Y(t), for the same ranges of inertial subrange 
as in the previous sections (table 3). The results are plotted in figure 15 in the form 
log {(P(t))/$} against log(t/7,}, and a line of slope 3 is plotted for comparison. The 
computed values of G, and yr (where ( Y 2 )  = G,etYv) as a function of k , lk ,  are 
plotted in figure 16. yr -+ 3.0 and G, -+ 5.0 approximately as k, /k ,  --f 00 (although the 
rate of convergence of yr to a limit is slow for k , /k ,  2 200). This estimate is close to 
the theoretical value of 2nCL = 5.11 based on CL = 0.81 from (4 .8~) .  Since this 
relation between G, and CL is an exact result, the present simulation results for 
G, are a satisfactory consistency check on KSIM. But this result and the slow 
convergence of yr shows that a large inertial range would be needed to produce a 
noticeable t3-regime in (P); at least k , /k ,  > lo3. 

We can now compare the direct two-particle results with Novikov’s prediction ; we 
estimate from our computations that in the limit k,/k,+ 00,Se, = 2G,/G, x 100. 

4.2.4. ‘Structural ’ dispersion 
The value of G, can be predicted by a simple calculation that contains the essence 

of these models (except Novikov’s). It is assumed that the particles move apart in a 
straining motion so that dA/dt is approximately equal to the velocity difference at 
a distance A .  Then from (2.21), in one direction dA/dt x 1.6e;Ai. Assuming A 
increases on average in only two directions, we estimate 

(A2) x 3et3, (4.11) 

which is close to the results of statistical models described in $4.2.1. 
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k , l k  

FIGUEE 16. The exponent yy (O) ,  where (Y2(( t ) )  = C t Y u  and the constant G ,  (A), where ( Y ' ( t ) )  = 
Gy e t y u ,  plotted against the different size of the inertial subranges k, /k ,  ; G, + 5.0 approximately as 
k, /k ,  increases, as predicted by Kovikov (1963). 

This model (and the stochastic models) implicitly assumes that dA/dt is parallel 
to A .  However, this can only be (approximately) correct in straining regions- 
it is certainly not correct in vortical regions, where o is the local vorticity and 
dA/dt K ( A  A 0). Hence, (A.dA/dt) is effectively proportional to the fraction of 
time f, that a particle spends in the convergencdivergence regions where the strain 
rate is greater than the vorticity. Therefore (4.11) should be modified to 

dAJdt x f c ( 1 . 6 c d ~ ) ,  whence ( A 2 )  - 3ffet3.  (4.12) 

But, since all regions of the flow contribute to the increases in Y ,  not just the 
straining regions, (YZ) is independent off, and 2 ( P )  - lost3 from ( 4 . 8 ~ ) .  Therefore 

BG = 2(YZ)/(d2) x 0 ( 3 f i 3 ) .  (4.13) 

In  order that particles can separate in straining motion a t  a rate proportional to  
D,,(A),  it is necessary that I1 2 1Irms. (Note that if 0 < I1 < II,,,, the particles do 
not necessarily separate.) Therefore the proportion (f,) of the time that a particle 
spends in regions where I1 2 11,,, is less than half. In  simulations by Malik (1991) 
f, w 0.3. Hence from (4.12) ( A 2 )  x O.let3, and 9tG w 110. These estimates are very 
close to  the results of the simulation ! 

I n  all the statistical models, some assumptions were made about the relevant 
statistics of the flow field for dispersing the particles and their relation to  the 
Eulerian statistics of turbulence, but they could not account for actual forms of 
three-dimensional random velocity fields. 

A simple way to  visualize this result is to  consider a fluid element released in a 
vortex region, with its 'imaginary' partner (figure 17). The real particle is advected 
by the flow around the vortex or other eddy structure, while the 'imaginary ' particle 
will continue to move in a straight line. Soon after release, they may even travel in 
opposite directions, at which point the displacement will increase rapidly. However, 
if a second real particle is released close to the first one, it will in general follow a 
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FIGURE 17. Illustrating ‘structural ’ diffusion. Streamlines of a stationary two-dimensional flow are 
shown, but the phenomenon generalizes immediately for unsteady three-dimensional flows. A real 
particle (filled circle) and an imaginary particle (open circle) have the same initial conditions, but 
the latter continues on its initial projection. A second real particle (filled square) is released close 
to the first. The separation between the real particles remain small (dotted line) as they are 
advected by the local vortex, but the distance between a real particle and its imaginary partner 
(dashed line) increases rapidly: (P) % ( A 2 ) .  

k,lL k,lL E 41.: 4 k,lE CP 
1.5 50.0 0.6377 0.3060 0.266 0.407 
3.0 50.0 0.7582 0.9690 1.365 0.429 
5.0 50.0 1.0660 1.3810 2.072 0.457 
7.0 50.0 0.8045 2.8628 5.550 0.501 
5.0 25.0 0.8638 2.2725 3.347 0.376 
5.0 100.0 1.0365 1.2053 1.946 0.465 

TABLE 4. Coefficients of the variance of pressure fluctuations for different simulations 

trajectory that is close to the first particle, and the displacement between them, A ,  
remains much smaller than the displacement from the imaginary particle. Thus 
(Y“) 9 A2 in these vortical regions. The pair remain close together until they enter a 
region of high local strain where streamlines diverge ; they will then tend to separate. 
These kinds of trajectories of pairs of fluid elements were observed by Wilkins (1958) 
in atmospheric turbulence. 

Perhaps one might qualify Richardson’s (1926, p. 7 11) description of relative 
diffusion by saying that it occurs intermittently depending on how the particles are 
placed in relation to the form and lengthscale of the local eddy motion ; in turbulence 
jargon it is an ‘intermittent inverse cascade process’. This result shows how the 
statistical theory can be improved by considering the structure of the flow. 
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4.2.5. Note on simulation 
There are several possible sources of error in this estimate of G,. As mentioned in 

$4.2.4, as the extent of the inertial range (k , /k , )  is increased the slope of the 
Lagrangian spectrum increases and changes to - 9 .  This effect of large inertial-range 
eddies advecting particles past small eddies increases the mean-square velocity of the 
particles (dd/dt)2, but it also reduces the timescale of ddldt.  It seems likely that the 
former effect dominates and therefore G, is, for this reason, perhaps too large. 
Another error, whose effect on A2 is uncertain, is the contribution of vortex 
stretching near stagnation regions, which is not modelled by KS. But a study of one- 
particle diffusion in a stagnation region shows that this is a small effect compared to 
that of the large-scale diverging/converging motions which are simulated by the 
model (Hunt 1985). 

5. Pressure field 

5.1. The mean-square pressure Jluctuation 
Using KSSM to compute the fluctuating pressure field, as outlined in $2.7, we have 
evaluated ( p 2 )  by computing the pressure a t  4900 different points a t  one instant in 
time and then taking the ensemble average. We have tested the sensitivity of the 
constant C, = ( ~ ~ ) / p ~ ( ( u ~ ) ) ~  by varying both the separation between the large- and 
small-scale fields (k , )  and the cutoff wavenumber k,. The results are shown in 
table 4. The simulations all suggest that  for high-Reynolds-number turbulence for 
k, /L 2 50.0, 0.4 < C, < 0.5. For high-Reynolds-number turbulence there is good 
agreement between this simulation and previous theoretical models of Hinze (1975), 
who predicted C ,  = 0.15 and George, Beuther & Arndt (1984) who obtained 0.42. 

5.2.  Pressure spectra 
I n  previous theoretical investigations by directly Fourier transforming the integral 
solution to the Poisson equation for a homogeneous constant-mean-shear flow (e.g. 
George et al .  1984) i t  has been suggested that pressure fluctuations a t  small scales 
have been caused by the motions of eddies on that scale, and not by interaction 
between small scales and large scales, which led to the prediction for the energy 
spectrum 

(5.1) 
E p p ( k )  = akp.&k-i for k, Q k Q y-l, 

E p p l ( k l )  = akp,e3kk;3 for k, Q k, 4 y-l, 

where the coefficients for three- and one-dimensional pressure spectra, akp and akp, 
are universal constants analogous to  the Kolmogorov constant for the velocity 
spectrum (Monin & Yaglom 1975). Batchelor (1951) calculated the value of akp by 
using the zero-fourth-cumulant hypothesis for the velocity and assuming a simple 
transition function B,,(y) = (vs)-iD,,(yy) of the form 

1 4 7  

B,,(y) = &“l+ (15C)-ty2]-:, 

which is valid for both y Q 1 and y % 1, for the velocity structure function Dll. 
According to  his results, akp x 0.354@, and from experiments C = 2, so akp, x 1. 

The one-dimensional pressure spectrum E p p (  k , )  was computed from the random 
pressure field (figure 18). The graph shows a ‘slope ’ of -5 as predicted by the inertial 
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FIGURE 18. Average pressure spectrum in wavenumber space E,,(k)( = ak?&-$ with a -g 
slope. This is consistent with the results of George et al. (1984). 

I ' ' ' ' " " 1  ' ' ' ' " " I  
1 10 100 1000 

w 

FIGURE 19. Average pressure spectrum in frequency space $,,(w) ( a  (a,sV,,)% 
slope. This result was also obtained by Chase (1970). 

(w)-f) with a 

range theory (5.1). The coefficient akp, obtained from figure 18, is given by akp,d = 
1.0, so akp, = 0.92. This is close to the value akp, w 1.0 obtained from Batchelor's 
(1951) rcsult for akp = 7ak,,/3 x 2.6. 

Chase (1970) and Hunt et al. (1987) suggested that, asthe large-scale eddies advect 
the small eddies, they also advect the small-scale pressure fluctuations. By analogy 
with the velocity spectrum b ( k , w ) ,  (2.26), the k-u power spectrum of pressure 
fluctuations is expected to have the form 

~ , p ( k , 4  = E,,(k)exp [ - ~ 2 / ( a , k U 0 ) 2 1 / ( ( 2 R ) t a p k U O ) .  (5.2) 
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As in (2.28), $,,(w) = S&,’,,(k,w)dk and we obtain 
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(5.3) 
0 7  

$,,(w) = C,(a,dJ0)5w-~, 

where C, = 4akp r(%)/2h;. Taking the high-Reynolds-number value of ap  = 1.0, 

The pressure fre uency spectrum $,,(w) obtained from KS is presented in figure 19 

the constant of proportionality of 1.14 in the simulation does not agree with the 
value of 0.2 predicted from the asymptotic theory, for an infinitely large (-Q) range. 
We do not have a satisfactory explanation for this discrepancy. 

c, = 0.9(ap € U 0 ) ~  = 0.2. 

and follows the w- ? law of (5.3), but the -p law extends over only one decade. But 

6. Conclusions 
We have present,ed here a simulation of an unsteady random velocity field, whose 

Statistics are adjusted to agree with the experimentally measured values of two-point 
space-time Eulerian and Lagrangian statistics of homogeneous turbulence. This 
kinematic simulation should be useful in many studies which require such flow fields, 
and where there is no model for the small scale a t  present - it is a kind of ‘small-eddy 
simulation ’ that might complement large-eddy simulation. The simulation is not 
equivalent to that of a turbulent flow in two important respects : the vortical regions 
are not sufficiently elongated and the higher-order statistics are too closely Gaussian. 
The reason is that the simulation does not represent the dynamical processes in 
turbulence, which for example stretch vortices and affect higher-order statistics by 
making the turbulence intermittent. But the fact that the Lagrangian and pressure 
statistics agree with measurements suggests that these detailed aspects of the flow 
are not so important when modelling many aspects of dispersion, combustion, two- 
phase flow, etc. 

Following the work of Lee et al. (1990) and Turfus & Hunt (1986), it is possible to 
extend this simulation to include other effects such as shear and the presence of the 
boundaries. Calculations involving the dynamical interactions between eddies on 
different scales or dynamics in local regions of the flow may be one way forward to 
examine the errors in the flow structure in kinematic simulation caused by ignoring 
these interactions. I n  short there may be several alternative strategies for simulating 
turbulent velocity fields other than straightforward computation of the dynamical 
equations. 

We are grateful to our DAMTP colleagues I. T. Drummond, R. R. Horgan and C. 
Turfus for stimulating this work. J. C. R. H. is grateful for conversations with M. Lee, 
R. Metcalfe, P. Moin and A. Wray which led to some of the ideas presented here. 
J. C. H. F. gratefully acknowledges financial support from Peterhouse and the use of 
computing resources a t  UKAEA Harwell. N. A. M. gratefully acknowledges financial 
support from SERC and CEGB and the use of computing resources a t  RAL via an 
SERC grant, and R. J. P. was supported by DTI Warren Spring Laboratory and the 
Wolfson Foundation. 



Kinematic simulation of homogeneous turbulence 313 

Appendix A 
Consider the small-scale velocity field represented in complex form by 

N 

ui(x, t )  = C Ain) exp {i[Kjn) X 5  - 0; t ] } ,  (A 1) 
rb--N 

eijk(ap) 2;s) - p) "(n) where A;") = k '5 )?  

and the Fourier coefficients al") are independent of time. Let u = us and U = u, ; then 
by expanding about the particle position xo, X5 can be expressed in term of gradients 
of the large-scale sweeping motion, 

X, = x5 + [ U5(x(t'), t ' )  dt' 
0 

Then 

Let (axk/axi) ( t ' )  = f lk i ( t ' ) ,  then we have a & i / a ~  = (aUk/axi) (x(7), 7). 

satisfy the differential equation 
Note that for conservation of wave fronts (Townsend 1976), the wavevector must 

ak ak. aU. 
A+U '+k ---2= 0. 
at 5axi  5 ax, 

The above equation is evaluated at  the particle position (xo, t ) .  

in space. Taking the divergence of ui in (A l ) ,  together with (A 2), we obtain 
Thus the wavevector K of the small-scale velocity field varies in time and slowly 

+Ain)X A exp(i[kj")X5-u't]}. (A 3) * ax, ak I 
But ki(t) = k,(t = O)+13dt. at 

Substituting this into (A 3), and using the condition of incompressibility, aui/axi = 0, 
requires that for each wavenumber mode we must have (dropping the superscript n )  

Aiki(t=O)+Ai[l$+k,rz(xo,t')<(t')+ ax ... 

Then continuity may be satisfied by satisfying three additional conditions namely : 
(i) 
(ii) 
(iii) 

A, ki(t = 0) = 0 (this is satisfied by continuity) ; 
k5(x) = constant (over any region of effectively uniform straining) ; 
Let k5 vary with time such that 

ak, auj 0 I - = -k -(x ,t')-(t ). 
at ax, ax, 
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Appendix B 

changing k ,  (or N,)  is of order 
It follows from (2.4) (also see Fung 1990) that  the change in au,/at associated with 

I (aNc- l  A k N c - l ) * a ~ N c - i / a t l  l(‘Nr-l A kNc-l). wN,-11. (B 1) 

I ( ~ N ,  A kN,)*axL/at-w’,l - h k~~’u1-wil).  (B 2) 

But the change in lau,/atl is of order 

Since I WN,-lJ < lull, i t  follows that as k,  decreases, lau/atl - laNc A kNc-ul-wL)l, and 
as k,  increases, lau/atl - I(aN,-l A kN,-l)-  WNc-ll. Since I wN,I > lull, it follows that as 
k,  decreases, &/at decreases and R E  increases. For a small value of k,, Rf1(7) always 
exceeds Rt1(7), and there is no ‘crossover’ value of 7 of which RE(7) = Rt1(7). 

Appendix C 

small eddies moved by a random large-scale velocity u,(x, t ) ;  then from (2.7) 
To simulate the small-scale eddies as well as the large-scale ones, consider a set of 

N 

ul(x(t’),t’)dt’ 
n--N 

where w i  is the frequency in the advected frame, and is determined from the spectra 
(or structure function) which must be correct in a frame moving with ul. 

Since the local fluid velocity u(x ,  t )  is mainly determined by the large eddies, it is 
relatively constant over the space-time region of r 4 L and 7 4 L/lul( (since u,(x, t )  
changes slowly with time). Therefore, over short times 7L 4 7 4 TL, where 
7L - Re-iT,, the Eulerian-Lagrangian autocorrelation function of u,(x, t )  in a 
frame moving with the large-scale eddies has a form 

R E L ( 7 )  = (u,(X(t) ,  t )  .u,(X(t+7),  t + 7 ) ) E L .  

By translational invariance this becomes 

REL(7)  = ( ~ ~ ( 0 ,  t )  .u,(X(t + 7 )  - X( t ) ,  t + T ) ) ~ ~ ,  

where X ( t )  is defined as in (2.8), i.e. X =  x - x L ,  where x ( t )  is the particle position a t  
time t .  Hence 

REL(7) = ( ~ ~ ( 0 ,  t ) *u ,  ( [“ul (x( t ’ ,  x ( t+7 ) ,  t’)dt’- ul(x(t’,x(t),t‘)dt‘ 

we have used the condition that the modes are independent of each other, i.e. 
( a n . a ~ )  = amn. This represents an average over the motion of scale small compared 
with L only. Let 

wk = AsskL, 

where A is a constant of proportion and of order unity. This is the ‘natural’ eddy 

(C 3) 
1 1  
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timescale introduced by Edwards (1964) - see Leslie (1973). We will show that such 
choice of wh is consistent with the Eulerian-Lagrangian result of REL(7) = 
(u:) -227CCEL~7, where E is the dissipation of turbulent kinetic energy per unit mass 
and CEL is a constant. 

By letting kfl = nk,wh = Adking, we have 

where p = hefki7 and A = ak$k,~. To compute the sum in (C 4), we assume 12/12, is 
large so that the finite sum reduces to  an integral, i.e. 

q,-pfl! I qP2eiqdq REL(7) = $4 [:n-xelflsPdn 5 . 2  = Ap 
qo-pfl: 

2 2  x (u,") -@ak AET + ak A2ctki T~ - 2ak @k;n cos (w, 7 ) .  

For an infinite inertial range k, --f 0 and k, -+ 00, RF: reduces to 

REL x (u,") - x C ~ ~ E ~ ,  (C 5) 

where qc = pni and CEL x ;ak A.  

e - u;/Z, - u,"/T, then the displacement due to the small-scale eddies in time 7 is 
If we define u,(x,t)  as scales less than, say, lOtki, and from the similarity law, 

x, = L u , ( x ,  t ' )  dt' - O(~eiZi) - 0(7@). (C 6) 

Now consider the Lagrangian velocity correlation function of u,(x, t ) ,  along the fluid 
element trajectories, i.e. 

RL(7) = <u,(t) .u,(t+7))L 

= (us(& t )  -u,(x + XL + x,, t + 7 ) ) E  

= REL(7) +ARL, 

where ARL is the difference in the correlation between AL and A, and AEL and A (the 
dispersion due to  small-scale correlation), i.e. 

ARL = (u,(x,  t).u,(x+ x,+ x,, t +  7 ) )  - (u,(x, t ) -u, (x  + xL, t + T ) ) .  

Assuming 

then from (C 6), we have 

Therefore, we have 

where CL x CEL. 

ARL ,< I(u,(x, t)-u,(x +xL +x,, t ) )  - (u,(x,  t)-u,(x + xL, t ) ) l ,  

ARL ? (Ix,l":)t(Ezs): - (7f&)2 - €7. (C 8 )  

Rk1(7) = ( u E ) - ~ ~ c C ~ E ~ ,  (C 9) 
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